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Roots of polynomial and trigonometric
functions



polynomials of degree 2

If a and b are non-zero real numbers then they are roots of the
equation

(1 − x
a )(1 − x

b) = 0

which is the same as the equation

1 − (
1
a +

1
b)x +

1
abx2 = 0

Thus the negative of the coefficient of x is the sum of the
reciprocal of the roots. Replace x by x2 and a, b by a2, b2:

(1 − x2

a2 )(1 − x2

b2 ) = 1 − (
1
a2 +

1
b2 )x

2 +
1

a2b2 x4 = 0

Now the roots are ±a, ±b. Thus the coefficient of x2 is the sum
of the squares of the reciprocals of the positive roots.
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degree 3, 4 . . .

Clearly, if we pick any three non-zero real numbers a,b, c then
±,±b,±c are the roots of the equation

(1 − x2

a2 )(1 − x2

b2 )(1 − x2

c2 ) = 0

or the equation

1 − (
1
a2 +

1
b2 +

1
c2 )x

2 + (
1

a2b2 +
1

b2c2 +
1

c2a2 )x
4 − 1

a2b2c2 x6 = 0.

Again, we see that the coefficient of x2 is the sum of the squares
of the reciprocals of the positive roots.
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induction!

What if we pick n non-zero real numbers ai, i = 1, 2, . . . , n.
Well, we can find the polynomial equation which has ±ai,
i = 1, 2, . . . , n as its roots, namely

n∏
i=1

(1 − x2

a2
i
) = 0.

One final time, we rewrite this equation as

1 − (
1
a2

1
+

1
a2

2
+ · · ·+ 1

a2
n
)x2 + · · · = 0

and note: the coefficient of x2 is the sum of the squares of the
reciprocals of the positive roots.
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Roots of trigonometric equations?

What about the equation

sin x = x − x3

3! +
x5

5! −
x7

7! + · · · = 0??

We know that the roots of this equation sin x = 0 are

0,±π,±2π, . . . .

To ensure that the roots are non-zero, we consider the equation

sin x
x = 1 − x2

3! +
x4

5! −
x6

7! + · · · = 0

instead! Now, the roots are ±π,±2π, . . . .

Does it then follow that sin x
x admits a factorization? What sort

of factorization?
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Wishful thinking?

We have pointed out at the outset that if p is a polynomial with
roots ±ai, i = 1, 2, . . . , n then it has the factorization:∏n

i=1(1 − x2

a2
i
). The trigonometric function

sin x
x = 1 − x2

3! +
x4

5! −
x6

7! + · · · is sort of like a polynomial of
infinite degree – consequently, has infinitely many zeros! Thus
it is natural to expect a factorization of the form:

sin x
x = (1 − x2

π2 )(1 − x2

4π2 )(1 − x2

9π2 ) · · · .

Do you see any problem in concluding that the coefficient of x2

in sin x
x is equal to 1

π2 + 1
4π2 + 1

9π2 + · · ·?
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The amazing formula of Euler

If sin x
x were to admit a factorization involving its roots, then it

would be natural to expect that sum of the squares of the
reciprocal of these roots equal the coefficient of x2 as in the case
of ordinary polynomials, that is, we would have

π2

3! = 1 +
1
4 +

1
9 + · · · 1

n2 + · · · .

This is the formula for computing π which was discovered by
Euler in 1735.
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A proof of the Euler formula



A trigonometric function

Recall that 2 cos θ sinϕ = sin(θ + ϕ)− sin(θ − ϕ). We then see
that

1
22 sin 1

2x = sin
1
2x

cos x2 sin 1
2x = sin

3
2x − sin

1
2x

... =
...

cosnx2 sin 1
2x = sin

2n + 1
2 x − sin

2n − 1
2 x.

Adding these, we obtain:

2 sin 1
2x (1

2 + cos x + cos 2x + · · ·+ cos nx) = sin
2n + 1

2 x
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For each n ∈ N, let us define a the function fn by the formula

fn(x) =
1
2 + cos x + cos 2x + · · ·+ cos nx =

sin 2n+1
2 x

2 sin x
2

.

Since ∫ kπ

0
u cosu du = −u sinu|kπ0 +

∫ kπ

0
sinu du

= cos u|kπ0

= (−1)k − 1,

it follows that
∫ π

0 x cos x dx = 1
k2

∫ kπ
0 u cosu du, where kx = u.
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Hence

En : =

∫ π

0
xfn(x)dx

=

∫ π

0
(
1
2 + cos x + cos 2x + · · ·+ cos nx)dx

=
π2

4 +

n∑
k=1

((−1)k − 1
k2

)
.

Since the even terms on the right hand side are zero, we have

1
2E2n−1 =

π2

8 −
n∑

k=1

1
(2k − 1)2
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The Goal

Our main goal now is to prove that limn→∞ E2n−1 = 0. As a
consequence, we have the following:

∞∑
k=1

1
(2k + 1)2 =

π2

8 .

Hence we have
∞∑

k=1

1
k2 =

∞∑
k=1

1
(2k)2 +

∞∑
k=1

1
(2k + 1)2 =

1
4

∞∑
k=1

1
k2 +

∞∑
k=1

1
(2k − 1)2 .

It then follows that

3
4

∞∑
k=1

1
k2 =

∞∑
k=1

1
(2k − 1)2 =

π2

8 .
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The proof

Let g be the function defined by the formula

g(x) = d
dx

( x
2

sin x
2

)
, 0 ≤ x ≤ π

2 .

Integrating by parts, we have:

E2n−1 =

∫ π
2

0

x
2

sin x
2
sin(4n − 1)x

2 dx

= 2
4n−1

( x
2

sin x
2
cos 4n−1

2 x
∣∣∣∣π
0
+

∫ π

0
g(x) cos 4n−1

2 x dx
)

=
( 2

4n − 1
)(

1 +

∫ π

0
g(x) cos 4n − 1

2 x dx
)
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We see that g is an increasing function on the interval [0, π]. So,
it is bounded by g(π) = 1

2 . It now follows that E2n−1 → 0 as
n → ∞ since∫ π

0
g(x) cos 4n − 1

2 x dx ≤ g(π)
∫ π

0
cos

4n − 1
2 dx → 0

as n → ∞.
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Gauss Circle Problem



Lattice points in a circle

How many lattice points lie on or inside the circle centered at
the origin and with radius r? Let L(r) be the number of such
points. If we gather a bit of data, we see that L(r) grows
quadratically with respect to r which leads to consideration of
the function L(r)

r2 . Here is some data:

L(10)
102 = 3.17

L(100)
1002 = 3.1417

L(1000)
10002 = 3.141549

The result must be something like L(r) ∼ πr2 as r → ∞.
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A picture
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Some justification

Of course, πr2 is the area of the region Dr bounded by the circle
x2 + y2 = r2. It stands to reason that the area of the circle is a
good approximation to the number of lattice points it contains.

Each lattice point P = (x, y) contributing to L(r) may be
thought of as determining the square [x, x + 1]× [y, y + 1].Thus
L(r) can be thought of as the total area of the squares whose
lower left corner is contained in the region Dr. Indeed for r ≥ 8,
it turns out that

|L(r)− πr2| ≤ 10r.
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Let P = (x, y) be a lattice point inside Dr and SP be the
uniquely associated square to P. Since the area of the unit
square is

√
2, it follows that SP lies in the region Dr+

√
2. Thus

L(r) ≤ π(r +
√

2)2 = πr2 + 2π
√

2r + 2π.

Similarly, suppose P = (x, y) is a lattice point with√
x2 + y2 ≤ r −

√
2. Then the entire unit square SP lies in the

region Dr−
√

2. This gives the estimate

L(r) ≥ π(r −
√

2)2 = πr2 − 2π
√

2r + 2π.

Thus
|L(r)− πr2| ≤ 2π + 2

√
2πr ≤ 7 + 9r < 10r,

where the last inequality holds for r ≥ 8.
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